Aldehyde-Catalyzed Transition Metal-Free Dehydrative β-Alkylation of Methyl Carbinols with Alcohols
Different to the borrowing hydrogen strategy in which alcohols were activated by transition metal-catalyzed anaerobic dehydrogenation, the direct addition of aldehydes was found to be an effective but simpler way of alcohol activation that can lead to efficient and green aldehyde-catalyzed transition metal-free dehydrative C-alkylation of methyl carbinols with alcohols. Mechanistic studies revealed that the reaction proceeds via in situ formation of ketones by Oppenauer oxidation of the methyl carbinols by external aldehydes, aldol condensation, and Meerwein–Ponndorf–Verley (MPV)-type reduction of α,β-unsatutated ketones by substrate alcohols, affording the useful long chain alcohols and generating aldehydes and ketones as the by-products that will be recovered in the next condensation to finish the catalyt